In broadest terms, the mission of the California State University is to provide affordable access to high quality post-secondary education for all eligible Californians. The Information Technology Strategy (ITS) facilitates the use of new technologies in support of this mission. All 11 ITS initiatives adopted in the “first wave” in 1996 were designed to enhance accessibility, improve quality, and contain costs. The initiatives fell into four areas: technology infrastructure, administrative operations, student services, and academic programs.

The *infrastructure* initiatives are the prerequisite for achieving the overall goals of the ITS. They seek to provide each CSU campus a baseline telecommunications capability and personal productivity resources adequate to maintain institutional quality. The *administrative* initiatives contribute to containing costs over the long-term by streamlining and integrating major campus support operations and automating labor-intensive processes. Gains in efficiency made possible by the *student services* initiatives lower institutional costs for processing admission applications while making services to students much more convenient. The *academic* initiatives expand student and faculty access to teaching and learning resources through collaborative acquisition, development, and distribution of technology-mediated instructional materials.

In developing the Integrated Technology Strategy, CSU presidents were aware that broadband network connectivity would, in the near-term future, be as common in American households as television or the telephone. Ubiquitous high-speed networks combined with affordable high-speed computer technologies would make it possible to provide interactive instruction over the World Wide Web using new multimedia and communications technologies. The intent to use information technology beyond the classroom walls is reflected in the ITS vision statement:

“...to provide the best possible environment for the education of CSU students through an integrated electronic environment that enables all CSU students, faculty and staff to communicate with one another and to interact with information resources from anyplace, to anyplace at anytime...”

The ITS complements policy options adopted by the CSU Board of Trustees in May 2003 to achieve enrollment and access goals. One of these policy options addresses academic technology expansion: “The Board further expects campuses to expand the use of academic technology in ways that maintain and improve the high quality of education provided by the CSU in order to free existing physical capacity and to expand access.”

Extending Existing Physical Capacity

The dominant instructional model in the California State University is a combination of lecture and discussion in a class of 40 students or less. In some fields of study, students are also required to participate in laboratory activities. Over 90 percent of all instruction occurs in these two venues. Thus, the capacity of a campus to accommodate enrollment growth is largely determined by availability of both lecture and laboratory space.

The California Department of Finance projects that CSU enrollments will increase 27 percent, from 408,000 in fall 2003 to 518,000 in 2012, a total of 110,000 students. If only traditional, face-to-face methodologies are employed, this increase in enrollment suggests the need for roughly six medium-sized campuses with physical plants worth about one-half billion dollars each in construction costs. If the CSU is to absorb these additional students, greater efficiency must be achieved in the use of existing space and/or additional buildings must be constructed with all of the long-term expenditures these new facilities entail.

The CSU continues to explore options for reducing the need for new construction to accommodate enrollment demand. Conversion and expansion of state-supported summer instruction to year-round operation (YRO) on all campuses would, for example, spread attendance over three semesters (or four quarters). Campuses are also exploring alternative scheduling practices to use lecture and laboratory rooms more efficiently. Distance education and distributed learning could further reduce the demand for new construction by increasing the amount of instruction that takes place in off-campus locations such as residences or other venues not maintained with university resources.
Full-time Equivalent Student (FTES) enrollment serves as a common yardstick for measuring academic credit earned in state-supported instruction. Credit earned in non-state support sites in 2003-04 totaled 9,321 FTES or 3.04 percent of the total 306,444 FTES reported for the academic year. While the percentage is small, the aggregate FTES represents demand for space equal to a large classroom building. The 2003-04 total marks an increase of just 529 annual FTES over 2002-03, most of it attributable to increases in asynchronous (online) instruction as shown in the figure below.

Figure 7A summarizes the volume of enrollment in classes where distributed or distance learning technologies are employed and learning activities occur apart from state-supported instructional space. These figures include both enrollment from classes taught entirely in a distance learning mode and enrollment aggregated from classes using a combination of traditional and distance learning approaches. Face-to-face distance learning—where instructor and students meet together at scheduled times in non-state support sites (e.g., a hospital or a school)—accounts for two-thirds of distributed or distance learning enrollment. More than one-fourth of such instruction was asynchronous (online), where students and faculty interact at different times and from different locations. The percent of credit earned in the asynchronous mode has increased since tracking by learning mode began in 2001-02. The share of distance learning FTES earned in a synchronous mode (i.e., televised instruction requiring instructor and students to meet at fixed times and sometimes at fixed locations) has remained around 5 percent.

Online instruction increased from 0.57 percent in 2001-02 to 0.87 percent of all enrollment in 2003-04, or 2,660 FTES. A systemwide increase of online instruction to only 2 percent of total FTES would displace the need for one additional small campus (5,000 - 6,000 FTES) at little additional marginal cost.

Campuses differ greatly in the amount and kind of distance and distributed learning opportunities they provide. Figure 7B shows the amount of distance learning FTES earned in 2003-04 by learning mode.
Figure 7C shows the amount of distance learning FTES earned on each campus and the percent of all main-campus academic year FTES it represents. Campuses are grouped by relative size, as indicated by the enrollment ranges in increments of 5,000. The percent of FTES earned in a distance or distributed learning mode ranges from near zero to about 9 percent of total campus FTES.
This page intentionally left blank.