The Technology Infrastructure Initiative (TII) of the Integrated Technology Strategy (ITS) focuses on upgrading the campus telecommunications infrastructure and on improving the personal productivity of faculty, students, and staff. One goal of the TII is to ensure that every CSU campus has a telecommunications infrastructure capable of meeting current and anticipated information technology demands for academic programs and institutional operations. Another major goal is to ensure that all members of the university community have access to a baseline level of information technology resources and services.

To guide implementation of this initiative, ITS planners described the target environment for five components:

- the intra-campus telecommunications network
- individual workstation environment (hardware and software)
- individual network connectivity
- user training
- user support

Measures of Success reports the progress the CSU is making toward achieving these baseline infrastructure capabilities as percentages for the system as a whole and for each campus. “Baseline capability” for each component is achieved when the standards for quantity and quality reach 90 percent or more for members of all three constituency groups: students, faculty, and staff.

The physical telecommunications infrastructure comprises the combination of intra- and inter-building pathways, closets, hubs and routers, and media (cables) that link individual workstations to the campus backbone, and the campus backbone to the inter-campus network and the Internet. The campus pathways, network electronics and network media are the unseen, behind-the-faceplate prerequisites that ultimately determine when, or whether, the outcomes of the Integrated Technology Strategy can be achieved.

The benefits of access to current generation computing resources and services can be realized only if workstations are linked to each other and to campus information systems, and to the Internet, by a high-capacity, high-speed telecommunications infrastructure. Interactions over the Internet or the World Wide Web cannot be accomplished faster than the intra-campus and the inter-campus backbone networks allow, regardless of the capabilities of end-user equipment or applications. For this reason, the TII is a prerequisite for achieving the outcomes of the academic, student services, and administrative initiatives.

Intra-Campus Networks

By the early 1990s, it was clear to CSU campus and system leaders that the limitations of the telecommunications infrastructures on almost all CSU campuses constituted an impediment to maintaining and improving the quality of academic programs and the efficiency of institutional operations. Unless improvements across the system were made, the technology gap among campuses in the system, and between the CSU system and national higher education community, would very soon have a negative affect on the entire CSU. Demands for bandwidth associated with the explosive growth of multimedia and network applications, the transition from stand-alone to integrated information systems and their conversion to Web-based architecture, and the transition to electronic commerce far exceeded available resources. Upgrading campus telecommunications infrastructures to meet these demands thus became an urgent priority for the system. The TII was the solution adopted to accomplish this goal.

Baseline Telecommunications Infrastructure Standards

A common set of network performance specifications was adopted to ensure that each campus would have, at a minimum, a baseline telecommunications infrastructure capability adequate to meet the bandwidth demands of the
present and near-term future. The progress made to date in upgrading the campus telecommunications networks is shown in Figures 6A and 6B.

Figure 6A depicts the progress campuses have made in upgrading physical communication pathways and media to provide reliable, high-speed network connectivity from the individual network outlet (faceplate) to the campus backbone network and from the campus network to the Internet. The columns represent the number of campuses on which the percent of network outlets meeting CSU standards falls into the range shown at the base of the chart. For example, in fiscal year 2001-02, prior to commencement of construction funded through the TII, less than a quarter of the network outlets on 13 of the campuses were up to standard. (In fact, on 10 campuses, none of the outlets met these criteria!) Between one-quarter and one-half of the outlets on three campuses were at standard, and between one-half and three-quarters on another three campuses. On only one campus did the number of network outlets meeting baseline expectations exceed 75 percent.

Improvements that have occurred over the three-year period since TII implementation began can be seen in the changes from the front row (2001-02) to the back row (2003-04). Variation in column height (i.e., the number of campuses at a given level of compliance) from left to right reflects the shift away from low to higher percentages of baseline-level outlets. As of June 30, 2004, four campuses were at baseline, and two were above 75 percent of baseline. (The apparent regression from the previous year is artificial. The approval of new construction on some campuses reduces the ratio of outlets at standard to the total campus outlet entitlement. The percent indicator is based on this ratio.) At the other extreme, the number of campuses with less than 25 percent of standards-compliant outlets fell from 13 to seven. Baseline telecommunications capability for the CSU system will have been achieved when a single column at a height of 23 appears in the rightmost column. Completion of all TII activities is anticipated by late autumn 2006.

Figure 6B illustrates the progress toward baseline that has occurred on each campus.
Intra-Campus Network Performance

Two measures serve as indicators of campus network performance for this report: 1) the greatest number of minutes of downtime for a campus network in the best and worst months during the 12-month fiscal year; and 2) the average and the highest (peak) utilization of the campus network capacity expressed as a percent of total bandwidth.

“Downtime” means that a user cannot send or receive information because of a problem in the network itself; i.e., not because of problems originating within the user’s desktop equipment or because of interruptions of service provided by local power and telephone utilities. For all campuses in the system, the median “best-month” downtime has remained at zero minutes since Measures of Success reporting began in 1999-2000; median “worst-month” downtime has not exceeded 90 minutes (Figure 6C).

The percent of available bandwidth utilized at peak and non-peak periods is another important measure of network capability. Generally, the lower the percent of available bandwidth required to support network uses, the better will be
the performance of the network and the lower the risk of interruptions to network access. The increases in capacity and reliability associated with network improvements had the positive effect of lowering both peak and average network utilization for all CSU campuses despite increases in network traffic (Figure 6D).

![Figure 6D - System Profile: Median Utilization of Campus Network](image)

**Inter-Campus Network**

Funding to maintain and improve the CSU inter-campus network is outside the scope of the Technology Infrastructure Initiative. However, because inter-campus and Internet connection are vital to achieving the outcomes of the ITS, and because campus network capacity and traffic directly impact the operations of intra-campus networks, pertinent information about the inter-campus network is included in *Measures of Success*.

Prior to the 2003-04 academic year, the CSU provided inter-campus network connectivity through the operation of its internal enterprise network, 4CNet. This high-speed statewide backbone connected CSU campuses to one another and also supported connectivity among the campuses of the California Community Colleges and over 30 K-12 sites. 4CNet also provided network services for five CSU off-campus centers, the office of Government Affairs, and the Chancellor’s Office. Tables 13.2 and 13.3 in Appendix A summarize the network performance of 4CNet from the baseline year (2000-02) through 2002-03.

During 2003-04, 4CNet operations were phased out, and replacement connectivity was acquired through membership in the Corporation for Education Network Initiatives in California (CENIC). The CENIC statewide backbone, known as CalREN (California Research and Education Network), provided CSU sites with reliable, high-capacity service during this transitional year. Network performance metrics and the mechanisms to monitor them put in place under 4CNet were unavailable during the migration from 4CNet to CalREN. Performance data on services provided by CENIC will be included in future *Measures of Success* reports.

* Individual campus methods for calculating these indicators may differ. Utilization rates are usually established by sampling network traffic on a specific day(s) and time(s) of the week associated with average usage patterns and with high usage patterns.
The TII seeks to improve personal productivity by providing CSU faculty, staff and administrators, and students with a baseline quantity and quality of computing and network technologies, and with related training and support services. This section of Measures of Success tracks progress in providing end-user access to baseline technology resources and services in four areas: workstations (hardware and software), network connectivity, technical support, and technology training.

**Workstations**

**Access and Quality**

The indicator for hardware and software *access* (quantity) is the percentage of workstations assigned to each user group. Purchase date was selected as a surrogate measure for currency; i.e., hardware and software purchased within three years of the reporting period are deemed to meet CSU *quality* standards.

Figure 6E provides an overview of the progress campuses have made toward achieving the workstation environment described in the baseline infrastructure standards. Improvements in access to computer hardware and software that meet ITS standards for currency are reflected in the greater number of campuses at or near baseline in 2003-04 than in 2001-02. The number of campuses on which less than one-half of the workstations met baseline expectations fell from five in 2001-02 to two in 2003-04, while 11 campuses were above the 75 percent level in 2003-04 compared with eight in 2001-03. Because information technology evolves so rapidly, fluctuations occur in the number of campuses meeting the standards as hardware and software become obsolete and must be replaced at prevailing market prices.

For the system as a whole, faculty and staff have generally had access to a university-provided computer workstation since 1996-97. The percent of workstations meeting baseline standards for hardware and software currency standards has increased steadily for all user groups, as shown above.
The profiles of individual campuses closely parallel the picture for the system as a whole. Typically, the number of workstations available to faculty and staff and administrators equals or exceeds somewhat the total number of personnel. Increasingly, faculty use a laptop computer in addition to a desktop workstation. In some disciplines (the natural sciences, for example), faculty are responsible for computing equipment used in ongoing laboratory experiments or to operate other equipment.

To a lesser extent, the same is true for staff and administrators. The majority of non-faculty university employees use computers daily as the principal tool for performing their work. Some staff members (those responsible for monitoring and maintaining information systems for example) often have an additional, dedicated workstation. Increasingly, administrators use both a desktop and a laptop computer in connection with their work.

Student access to university-provided workstations is generally offered in two types of computer laboratories: open-access labs and departmental labs. Students studying subjects that require specialized software applications typically use departmental or discipline-specific computer laboratories. Such laboratories are outside of the Integrated Technology Strategy framework and are not included in the annual campus technology survey. Workstations counted as available for student use in this report are those provided by the university for general use only. Figure 6F displays the median ratio of students to university-provided computer workstations available in open access venues over the five-year MOS reporting period. On individual campuses, the ratios range from less than 10 to 1 on four smaller campuses to 50 or more to 1 on three campuses. Actual student access, however, is much higher for reasons noted below.

The number of open-access workstations available to students has increased since the baseline year 1999-2000. Student satisfaction with the university-provided workstations remains high. Parallel with this trend is an increase in personal student computer ownership as documented in the biennial student technology surveys. The 2003 survey revealed that more than nine out of 10 CSU students own operational computers, three-fourths of which are less than three years old. Roughly one-third own a laptop computer, and almost half are equipped with wireless capability.

The student survey findings suggest that the intent of the CSU’s policy on 24-hour student access to a computer and the network, adopted in 1995, has largely been achieved. (The policy documents can be viewed on the ITS Planning Documents website: http://its.calstate.edu/systemwide_it_resources/its_planning_documents.shtml.)

Overall, there have been modest increases in faculty satisfaction with computing and technology resources available to them over the past four years, and the mean satisfaction rating stood at 7.16 in the 2004 survey. Faculty satisfaction with workstation upgrades and replacements received a rating of 6.53. In surveys conducted in 2000, 2002, and 2004, CSU staff appear to be highly satisfied with the overall computing equipment, software, and network access provided to them by their campuses, with average ratings between eight and nine. Staff satisfaction with the frequency of workstation upgrades provided by the campus is somewhat lower, with an average rating of 7.58.
"Smart Classroom" Access

At the institutional level, availability of "smart classrooms" is one indicator of progress toward baseline attainment. The need to equip classrooms for instruction that employs network resources and multimedia presentations has grown with the increased availability of technology-mediated instructional materials and with greater reliance on Web-based learning activities. Figure 6G shows the increase in the number of "smart classrooms" that has occurred for the CSU system as a whole. The number of classrooms so equipped is approaching two-thirds of instructional spaces as of the end of fiscal year 2003-04.

Figure 6H displays changes in the availability of instructional spaces equipped to support multimedia and networked presentations. Percents in excess of 100 percent reflect campus decisions to equip laboratories or other learning sites not counted as "classrooms" for this report.
Network Connectivity

The baseline workstation standards established in the ITS call for network connectivity capable of supporting full-motion video (a minimum speed of 100 to 150 Mbps). Such high bandwidth enables multimedia applications routinely used in science, visual arts, and music instruction, and provides the high data transmission requirements of administrative information systems.

Figure 6I illustrates the dramatic progress being made toward providing CSU students, faculty, and staff with network connectivity at a level consistent with current and anticipated technological demands. In 2001-02, only five campuses were able to provide connectivity at the quality defined in the CSU baseline technology infrastructure standards. As of the end of 2003-04, 15 campuses were doing so, a gain attributable largely to the campus backbone network improvements funded through the TII. Connectivity on the eight campuses yet to begin TII implementation remains at the same level it was three years ago.

Figure 6J shows the improvement in network connectivity for the three principal user groups that has occurred over the past five years.
As Figure 6K shows, on about half of the campuses the workstations provided to faculty and staff, and the workstations available for use by students, support high-speed connection to the network. Five campuses—all pending initiation or completion of telecommunications’ infrastructure upgrades—report that twenty-five percent or less of the workstations have such capability.

![Figure 6K - Campus Profile: Access to High-Speed Network Connection](image)

Surveys in 2001 and 2003 asked students about the ways they access the Internet (including e-mail and the Web) and their satisfaction with each option. Over four-fifths in both years reported using campus access to the Internet with a rather high level of satisfaction. Only about one-half of CSU students use a campus-provided e-mail account, although their satisfaction with it is also high. About three-fourths of students access the campus network from off-campus, a dramatic increase from 2001 when only one-half did so. In general, satisfaction ratings tend to be higher on campuses that have made the most progress in implementing TII improvements.

Faculty satisfaction with campus access to the Internet declined from a mean rating of 8.50 in the 2000 survey to 7.67 in 2004. However, their satisfaction with remote access to the network has grown over the past four years. Almost nine in 10 faculty who access the campus computer network from home have high-speed connections. Although 71 percent of faculty report having wireless network access on campus, only 41 percent had used it by 2004. Satisfaction with the wireless network was fairly low (mean rating of 6.25).

Two-thirds of staff had high-speed remote access to the campus network by 2004, and overall satisfaction with remote access has gradually increased since 2000. Only one-fourth of staff had used a campus wireless network and gave it a satisfaction rating of 7.10.

### Technical Support

Technical support is an essential component of the ITS baseline information technology infrastructure. Gains in quality and efficiency cannot be expected from the acquisition of new technologies if people cannot use them effectively.
Although no additional funding sources for this purpose have been found, all campuses provide at least basic technical support to user communities for university-provided equipment and software.

Figure 6L profiles progress toward baseline technical support for all user groups since 2001-02. The general uplift of the columns from left to right and from front to back mirrors the growth in availability of support services over the past three years. Whereas in 2001-02 the number of campuses able to provide technical support at the baseline level resembled the classic bell-curve, the distribution pattern for 2003-04 is skewed toward the upper range.

**Access**

On most campuses, faculty, staff/administrators, and students have a choice in the way they request help. Options include telephoning a central campus call center, visiting a central or a divisional help desk, or using e-mail/Web (Figure 6M).

![Figure 6L - Progress Toward Baseline Technical Support](image)

![Figure 6M - System Profile: Technical Support Availability by Mode of Access and User Group](image)
In addition to the modes or sources of assistance listed above, students often receive help from staff in computer laboratories or the library. Faculty, staff, and administrators on some campuses can receive support from technicians in their own divisions or departments.

Call centers are generally the most immediate and widely available means of dealing with computing and network problems. There has been a steady increase in the average hours per week that call-center help is available to faculty, staff/administrators, and students (Figure 6N). Campus variations range from 40 hours per week at the low end to 24 x 7 access (168 hours per week) at the high end.

Quality of Service

In 2001-02, metrics for gauging the quality of support services were incorporated into Measures of Success. These metrics are a set of institutional policies and practices that, when adhered to in total, suggest the campus is providing support services of the quality envisioned in the Integrated Technology Strategy. Baseline capability in the area of end-user technical support is attained when a campus meets all five policy/practice standards for all three user groups.

Progress in meeting quality-of-service goals for the three user groups has been somewhat uneven over the three-year period since the performance indicators were adopted (Figure 6O). For students and staff, the number of campuses providing baseline quality support has grown steadily at a modest rate. For faculty, the picture is mixed, possibly owing to budget factors.

The five support standards are:

1. The campus has policy or guidelines defining the kind and level of end-user technical support to which members of each user group are entitled.
2. The campus has, and periodically employs, a mechanism for assessing the baseline technical support needs of faculty, staff/administrators, and students.
3. The campus communicates effectively to members of each user group comprehensive information about the technical support services available to them.
4. The campus has, and periodically employs, a mechanism for measuring the satisfaction of user group members with the technical support they receive from the campus.
5. The campus tracks the use of technical support services by members of each user group.
In 2001, and again in the 2003 survey, students were asked about several types of technical support available to them. In general, they gave very positive satisfaction ratings to all of the support services, although their levels of use varied considerably. The most striking trend is the obvious preference for immediate personal assistance. Use of telephone call centers among students rose from 19 percent to 35 percent and requests for computer lab staff assistance from 40 percent to 61 percent.

Almost all faculty and staff report having access to technical support for resolving problems with university-provided computers or software, and roughly nine out of 10 in both groups say that the problems were resolved all or most of the time. Almost 90 percent of faculty reports access to technical support from their academic department, while only 60 percent of staff receives technical help directly from their work unit.

**Technology Training**

Availability of end-user training in the use of computer workstations, common personal productivity software, and basic network applications is an integral component of the ITS baseline technology infrastructure. Training to upgrade and maintain the currency of the knowledge and skills needed by the information technology staff who support end users is also included in the scope of the initiative.

Figure 6P represents the status of end-user technology training in terms of the technology infrastructure baseline standards. Uneven progress at the campuses reflects changing budgetary conditions and campus priorities.
Access

Figure 6Q shows that the decline in training opportunities evident in recent years seems to have leveled off for all user groups.

Figure 6R traces changes in the number of participations in technology training activities by members of the three user groups and IT staff over the past five years. (Because an individual may take part in more than one training program or activity, the number of participations does not necessarily equate to the number of participants.) For faculty in particular, where turnover is relatively slow, the initial need for training in the use of computers, the network, and personal productivity software applications has largely been met. Interest in using emerging instructional technology applications is growing, however, as reflected in a rise of almost 25 percent in faculty training participation in 2003-04. While entering students are likely to have better basic computing skills than their counterparts of prior years, CSU faculty increasingly require them to use more IT resources and more sophisticated applications to carry...
out course work assignments. In part as a consequence of this trend, together with growth in enrollment growth, student training participation went up by 40 percent this past year.

By contrast, staff participation in training declined by almost one-third compared with the previous year, and for IT professional participation by one-fifth. In part this was due to completion, on some campuses, of PeopleSoft training associated with implementation of the Common Management System. In addition, budget constraints contributed to restricting training opportunities.

Campuses support technology training in two principal ways: through the allocation of personnel positions and through the direct purchase of materials and services. Average campus spending to provide training declined for all three user groups and for IT staff for the third year in a row. Personnel positions assigned to support training also fell, but less steeply than in the previous year, with the exception of support for staff training where the drop in positions exceeded 25 percent.

Figures 6S1 and 6S2 outline the declines in direct support and personnel positions described above. Bar graphs trace total annual training expenditures for all campuses; system average expenditures appear as lines. Note that the actual dollar amounts in Figure 6S1 have been adjusted for purposes of display: total expenditures are 1,000 times the values on the chart; average expenditures are 10 times the graphed values.
When participation rates and resource allocations are considered, disparities among campuses for all three user groups are greater in the area of training than in any other component of the technology infrastructure. Large differences exist between the kinds and quantity of training opportunities available to members of the principal user groups on individual campuses and between like user groups across campuses.

### Quality of Service

In 2001-02, metrics for gauging the quality of technology training were incorporated into Measures of Success. These metrics are a set of institutional policies and practices that, when adhered to in total, suggest the campus is providing end-user training services of the quality envisioned in the Integrated Technology Strategy. Baseline capability in end-user training is attained when a campus meets all five policy/practice standards for all groups.

Figure 6T depicts the uneven progress that has been made toward meeting the quality-of-service goals for faculty, students, and IT staff, and the modest gains for other staff.

---

* The five training standards are:
1. The campus has policy or guidelines defining “baseline” end-user technology training for faculty, staff/administrators, students, and IT professionals who provide end-user technical support.
2. The campus has, and periodically employs, a mechanism for assessing the baseline technology training needs for each user group.
3. The campus communicates effectively to members of each user group comprehensive information about technology training opportunities available to them.
4. The campus has, and periodically employs, a mechanism for measuring user satisfaction with the baseline technology training programs and activities provided by the campus.
5. The campus tracks participation by members of each user group in baseline technology training programs and activities.
In both the 2001 and 2003 surveys, students gave high ratings to the importance of training opportunities, although only a small percentage (14 percent) said that they had participated in campus-based training programs. Those that did participate were generally satisfied.

Similarly, faculty give very high ratings to the importance of campus-based training programs (mean rating of 8.02 in 2004), and the percentages that have used either a computer training resource or attended a training workshop stood at 52 percent and 68 percent, respectively. They also gave these training activities or programs a mean satisfaction rating of 7.46 in the same survey.

Among staff, there was a significant increase in the importance rating accorded campus training resources and programs between 2002 and 2004; the rating increased from a mean score of 7.61 to 9.07, although overall satisfaction with training remained at 7.63. In terms of training modes, 63 percent of staff had attended training workshops, and 56 percent had used computer-based training resources. Very small percentages of staff (1 or 2 percent) had used other forms such as online or self-paced training.

### Fiscal Support for IT Infrastructure

According to responses from the 2004 Campus Computing Survey, CSU campuses decreased spending from the previous year for hardware, software, network equipment, and training and support. Reductions greater than 5 percent were far more common on CSU campuses than among the 83 Carnegie Masters I institutions (the CSU comparison group) participating in the survey. For example, 61 percent of all CSU campuses reduced computer purchases by academic departments by greater than 5 percent; among comparison institutions, only 27 percent reported reductions of this magnitude. Similar patterns were observed for many other categories of expenditure as shown in the following table.

<table>
<thead>
<tr>
<th>Categories of Expenditure</th>
<th>% of 23 CSU Campuses</th>
<th>% of 83 Comparison Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Purchases by Academic Computing Units</td>
<td>52.2</td>
<td>24.1</td>
</tr>
<tr>
<td>Computer Purchases by Administrative Computing Units</td>
<td>47.8</td>
<td>25.3</td>
</tr>
<tr>
<td>Institutional Purchases of Desktop/Notebook Computers</td>
<td>39.1</td>
<td>22.9</td>
</tr>
<tr>
<td>Purchase of Network Servers</td>
<td>21.7</td>
<td>13.3</td>
</tr>
<tr>
<td>Purchase of Server Software and Related Products</td>
<td>21.7</td>
<td>13.3</td>
</tr>
<tr>
<td>User Training and Support</td>
<td>34.8</td>
<td>16.9</td>
</tr>
<tr>
<td>Campus Portal Services</td>
<td>21.7</td>
<td>9.6</td>
</tr>
<tr>
<td>ERP Software and Services</td>
<td>21.7</td>
<td>8.4</td>
</tr>
<tr>
<td>eCommerce Services</td>
<td>26.1</td>
<td>10.8</td>
</tr>
<tr>
<td>External Service Providers</td>
<td>21.7</td>
<td>9.6</td>
</tr>
<tr>
<td>Security Issues</td>
<td>13.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Consultants for IT Projects and Services</td>
<td>26.1</td>
<td>19.3</td>
</tr>
</tbody>
</table>

Source: 2004 Campus Computing Survey

Respondents in the survey were also asked how their campuses were addressing budget issues. CSU campuses were far more likely to adopt the following strategies: reducing purchases of computer technology (69.6 percent versus 39.8 percent nationally); charging fees to departments and service units (43.5 percent versus 31.3 percent); reducing services (43.5 percent versus 22.9 percent); cutting staff (52.2 percent versus 26.5 percent); reducing hours in public access facilities (30.4 percent versus 22.9 percent); delaying or deferring ERP deployment, replacement, or upgrades (47.8 percent versus 22.9 percent); and deferring or reducing the use of consultants on IT projects (69.6 percent versus 51.8 percent). Notably, fully 63 of the 83 comparison institutions (67.5 percent) charged a computer or IT fee for all students while only 2 CSU campuses had such a requirement.

Despite these differences, the CSU is nearly identical to national norms in expenditures for IT as a percentage of total campus spending (7.0 percent versus 6.3 percent), and expenditures for academic computing as a percentage of total campus IT spending (32.1 percent versus 34.8 percent).
Institutional Progress Toward Baseline Capability

Baseline Information Technology Infrastructure Capability

The baseline technology infrastructure is the prerequisite for achieving all of the outcomes of the ITS. The system’s overall progress in achieving that baseline on each campus is, therefore, an important benchmark for measuring success.

The essential components of the baseline technology infrastructure are the physical telecommunications infrastructure (pathways, spaces, media, outlets, and network electronics); workstations (hardware and software); network access; training; and support, all of which must meet established baseline standards for access and quality. These components are represented by bolded sections in the base of the following ITS pyramid.

Baseline Technology Infrastructure Capability

For purposes of conveying an overall sense of the progress the CSU is making toward baseline, Measures of Success has adopted a model based on the percentage of standards achieved on each campus in each of the five infrastructure components. For each component, “baseline capability” is defined as meeting standards at the level of 90 percent or higher. Progress toward baseline capability from 2001 to 2004 is displayed in the following three charts (Figures 6U, 6V and 6W).

Figures 6U, 6V and 6W portray the overall progress that has been made toward providing all CSU campuses with the baseline IT infrastructure envisioned in the ITS. Information presented in the three-dimensional bar graphs for each component is combined in the following three charts. The percent range (x-axis) represents the level of capability as measured by the baseline metrics for the respective infrastructure components. The width of each band depicts the number of campuses at the respective level. Figure 6U, for example, shows that on 15 campuses the physical infrastructure was at 25 percent or less of baseline standards and no campus was at baseline. Only two campuses were at the 25 percent or lower level with respect to the standards for workstation access and quality while four had achieved the target environment. Since the status of all 23 campuses is tracked for each of the five components, the total “number of campuses” (y-axis) is 23 x 5 or 115.

Figure 6U profiles the status of the five infrastructure components of the end of fiscal year 2001-02. Only 10 campuses reported having attained baseline capability in any of the components. The workstation environment on four campuses met the baseline expectations at the level of 90 percent or higher; three campuses provided high-speed network connections to 90 percent or more of the workstations, and three campuses met technical support standards at that level. No campus had a baseline telecommunications (physical) infrastructure, and no campus provided baseline training services. On 15 of the campuses, 25 percent or less of the network outlets were up to baseline standards and on 13 campuses only one out of four workstations (or less) was capable of connecting to the Internet at high speed (100 Mbps or faster). On many campuses, the quantity and quality of infrastructure resources and services ranged from 50 percent to 75 percent of baseline capability in the areas of workstations, support, and training.
A comparison of Figure 6V with Figure 6W suggests the progress that campuses made in 2002-03. Particularly notable are the improvements in the area of the physical infrastructure (from zero to six campuses at baseline) and network connectivity (from three to 11 at baseline). The aggregate number of total campus infrastructure components at the low end (25 percent or less of infrastructure capability) fell from 32 the previous year to 25, while the total at baseline grew from 10 to 31.

Continuing progress toward baseline is represented in Figure 6W by the displacement from the low end (less than 50 percent of baseline capability) to the higher end (75 percent or more of baseline capability). The aggregate number of total campus infrastructure components at the low end (25 percent or less of infrastructure capability) fell from 25 the previous year to 18, while the total at baseline increased to 32.
The system will have achieved a baseline technology infrastructure when every campus has reached 90-100 percent capability in all five TII components.
This page intentionally left blank.